020/2021

Question Booklet Alpha Code

Question Booklet Serial Number

	$\overline{}$		_
.			

Total No. of Questions: 100 Time: 75 Minutes

Maximum: 100 Marks

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A, B, C & D.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A Blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

020/2021-A

Total Marks: 100 Marks

Time: 1 hour and 15 minutes

1.	A solution of HCl in water is 10.0% HCl by mass. Find the mole fraction of HCl in this solution. (A) 0.036 (B) 0.051 (C) 0.012 (D) 0.060
2.	A cylinder fitted with a frictionless piston contains 2.00 mol of He perfect gas at pressure 1.00 atm and is in a large constant-temperature bath at 500 K. The pressure is reversibly increased to 10.00 atm. Calculate the work done on this process. (R = $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$) (A) 19147 J (B) 8314 J (C) 831.4 J (D) 1914.7 J
3.	 Which of this statement is incorrect for a fixed amount of a perfect gas? (A) Internal energy (U) and enthalpy (H) each depend only on T. (B) PdV = nRdT for every infinitesimal process. (C) C_{P,m} - C_{V,m} = R. (D) dU = C_V dT for a reversible process
4.	Which of the following equation relates the chemical potential and the composition of a mixture (A) Gibbs-Helmholtz (B) Joule-Thomson (C) Debye-Huckel (D) Gibbs-Duhem
5.	The change in entropy for reversible phase change ($\Delta H = +$) at constant temperature and pressure is (A) Positive (B) Negative (C) Zero (D) Either positive or negative
6.	Identify the correct Clausius-Clapeyron equation from the following options (V_f and V_i are final and initial specific volumes, respectively): $ (A) \frac{dP}{dT} = \frac{\Delta H}{T(V_i - V_f)} \qquad (B) \frac{dT}{dP} = \frac{\Delta H}{T(V_i - V_f)} $ (C) $ \frac{dP}{dT} = \frac{\Delta H}{T(V_f - V_i)} \qquad (D) \frac{dP}{dT} = \frac{\Delta H}{T(V_i + V_f)} $
7.	According to A_2 (g) $\Longrightarrow 2A$ (ads), the Langmuir adsorption isotherm for the dissociative adsorption of isotherm (where, ads = adsorbed, P is the partial pressure of A_2 and k is the ratio of rate constant for adsorption and desorption) is $(A) \theta = \frac{kP}{1+kP} \qquad (B) \theta = \sqrt{\frac{kP}{1+kP}} \qquad (C) \theta = \frac{k}{1+kP} \qquad (D) \theta = \frac{\sqrt{kP}}{1+\sqrt{kP}}$
8.	The equation, $\ln \gamma_{\pm} = -z^{+} z^{-} AI_{m}^{1/2}$ is called the Debye-Hückel limiting law $(I_{m} = \text{molality-scale ionic strength}; \gamma_{\pm} = \text{molality-scale mean ionic activity coefficient}).$ Under which condition the experimental data show that the equation does give the correct limiting behaviour for electrolyte solutions? $(A) I_{m} \to 1 \qquad (B) I_{m} \to 0 \qquad (C) I_{m} = 1 \qquad (D) I_{m} \to \infty$
сонтавли сом ховти.	3 020/2021 [P.T.O.]

9.	Calculate the ionic strength I _m in a solution	n that contains 0.0200 mol KCl, 0.0050 mol
	MgCl ₂ , 0.0020 mol MgSO ₄ and 100 g H ₂ O.	
	(A) $0.0430 \text{ mol.kg}^{-1}$	(B) $0.0860 \text{ mol.kg}^{-1}$
	(C) $0.430 \text{ mol.kg}^{-1}$	(D) $0.860 \text{ mol.kg}^{-1}$
10.	Read the following statements carefully:	
10.	(i) The incident electron beam ionizes an a	atomic core level electron.
		ergy electron falls back to fill the core level is
	transferred to a valence electron, which is These processes involving in the principle of	s ejected into the gas phase where it is detected.
	(A) XPS	(B) UPS
	(C) Auger Electron Spectroscopy	(D) LEED
11.	The concentration of a reactant R varies wit	th time for two different reactions (I and II)
11,	which are shown below.	th time for two different reactions (1 and 11)
	^	
	[R] I $In[R]$	
	time time	
	The order of these reactions I and II, respective	ively, are
	(A) 1 and 0 (B) 0 and 2	(C) 1 and 2 (D) 0 and 1
12.	Which one of the following process is non-sp	pontaneous ?
	(A) Flow of heat from hot end to cold	
	(B) Expansion of a gas into vacuum(C) Freezing of water at 0 °C and 1 at	itm nressure
		e oxide from trimethylphosphine and oxygen.
13.	The standard electrode potential values for th	7 2 2
	$Cd^{2+} + 2e^{-} \rightarrow Cd$; $Zn^{2+} + 2e^{-} \rightarrow Zn$	
	are -0.40 V and -0.76 V, respectively. Which	_
	(A) Cadmium is more electropositive	
	(B) Zinc is more electropositive than	cadmium
	(C) Zinc is more electronegative(D) None of the above	
14.	From the following half-cell reactions:	
1	$Mn^{2+} + 2e^{-} \rightarrow Mn$ $E^{\circ} = -1.18V$;	
	$Mn^{3+} + 2e^{-} \rightarrow Mn^{2+}$ $E^{\circ} = +1.51V;$	
		value and conclude whether the following
	reaction is feasible or not.	
	$3Mn^{2+} \rightarrow 2Mn^{3+} + Mn$	
	(A) -2.69 V, feasible	(B) -0.33 V, feasible
	(A) -2.05 V, reasible (C) -0.33 V, not feasible	(D) -2.69 V, not feasible

(A) HCCH and XeF₂

(B) NO_2^+ and NO_2

(C) XeF_2 and N_2O

(D) C_2H^- and LiH.

9.

16.			nol.dm ⁻³ KCl(a heir molar cond					ductivity	κis	0.11	$5 \ \Omega^{-1} \ \text{cm}^{-1}$.
		(A)	115	(B)	0.115	(C)	0.01	15	(D)	0.0	0115
17.	(i) (ii)	Addi alway The	e correct answer tion of a solut ys decreases of vapour pressure apour pressure	e at cor hemica e of a so	nstant T and l potential µ olution of A	l P to	a solut	ion co			solvent A
		(A)	All of the abo Only (ii)				Only None	(i) of the a	bove		
18.	(i) (ii) (iii) The co	It end It car It con orrec	ne following stanances the rate numinimizes the naists of an elect statement/s is. Only (i and iii	of the re junction trolyte are	eaction. on potential.	(B)		f the abo	ove (i,	ii an	d iii)
		(C)	Only (iii)			(D)	Only	(ii and i	ii)		
19.	The ra	ate de (A)	termining step $2NO_2Cl \rightarrow 2NO_2Cl $	consist	ent with this	s rate la (B)	aw is NO ₂ O	iw in the $Cl \rightarrow NC$	$D_2 + C$	1	-
20.		fy the	t-Bu	ct of the OH NaN HC NH ₂	_	reaction (B)	n :	<u></u>	0		
		(C)	t-Bu	Н O		(D)	t-Bu		Ή ,Ο		
21.	Consi	der tl	ne following re	action:							
		<u></u>	t-BuOK		+						
	(i) (ii) (iii) (iv)	E1 re E2 re Majo Majo	ions contain the eaction eaction or product is more product is less Only (i & iii)	ore subs s substi	tituted alker	ne. e.				(D)	Only (ii & iv)
А	. COMPIDENTIAL COMPIDENTIAL COMPIDENT	THE COMPLETE L. COMPLETE	TIT ESHATOWATT COM/CIENTIF CENEGRATIT ESHATOWATT COM/ESUIT	L COMPOSITIVILL COMPOSITIVILL COMPOSITIVIL	ь, ссановетны, совмоветны, ссамоветны, ссановетны с вамове	ITHEL COMPLETENT COMPLETENT COMP	PISENTIAL COMPICIENTIAL COMPIENTIAL C	GAYOSIAMILL COMPOSITIVIL. COMPOSITIVIL. COM	PICENTIAL COMPCENTIAL COMPCEN	THE COMPONIES COMP	020/2021 [P.T.O.]

- 22. One of the space groups for monoclinic crystal system is $P2_1/c$. Here, the 2_1 symmetry element corresponds to operation of
 - Rotation followed by a reflection in a plane
 - Translation followed by a reflection in a plane parallel to the translation axis (B)
 - (C) Rotation of an axis and translation along that axis
 - (D) Purely rotational.
- 23. Which of the following molecules is/are chiral?

- (A) Both (i and ii) (B) Only (ii)
- (C) Only (i)
- (D) None of them
- 24. The incorrect feature of R/S-BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) from the following list is
 - (A) A chiral centre exist
 - No stereogenic centre (B)
 - Rotation between two naphthyl rings is restricted.
 - No chiral centre also no plane of symmetry. (D)
- Identify the most relevant statement about enantiomers from the following options: 25.
 - They have unidentical physical properties but same biological effects.
 - (B) They have identical physical properties but quite different biological effects.
 - They have identical physical and biological properties. (C)
 - Both physical and biological properties are unidentical. (D)
- Which one of the following rearrangement has given considerable evidence for involving 26. cyclopropanone as reaction intermediate?
 - (A) Favorskii
- (B) Pinacol
- (C) Wolff
- (D) Curtius
- 27. Among the four Fischer projections given below, identify a compound which is different from the remaining three?

What is the stereochemical relationship between these two molecules? 28.

(A) Identical

Enantiomers (B)

Diastereomers (C)

- (D) Geometrical isomers.
- 29. In which medium, benzil-benzilic acid rearrangement occurs?
 - (A) Basic
- (B) Slightly acidic (C) Neutral
- (D) Strongly acidic.

30. Which of the disconnection (I-IV) is best likely to occur for the following structure?

- Disconnection I (A)
- Disconnection II (B)
- Disconnection III (C)
- (D) Disconnection IV
- 31. To carry out a retrosynthetic analysis of paracetamol, pick out a reagent (A-D) which is least likely to be useful.

32. Which one of the option containing dienes can undergo Diels-Alder reaction?

(i) n-BuLi, -78 deg.C

Only (iii & iv)

(A)

- (D) Only (ii, iii & iv)
- 33. Identify a correct product for the following reaction:

- 34. How many nodes exist in LUMO (Lowest Unoccupied Molecular Orbital) of 1, 3, 5-hexatriene?
 - (A) 2

- (D)
- Why does the body need sunlight to make provitamin D2? 35.
 - For the conversion of ergosterol to provitamin D2 through sigmatropic rearrangement
 - For the conversion of cholesterol to provitamin D2 through electrocyclic reaction (B)
 - For the conversion of ergosterol to provitamin D2 through electrocyclic reaction (C)
 - (D) For the conversion of cholesterol to provitamin D2 through cycloaddition reaction.
- Match the items of List I (Alkaloid) with List II (Skeleton of their structure): **36.**

	List I	List II				
(i)	Nicotine	(m)	Quinoline			
(ii)	Papaverine	(n)	Isoquinoline			
(iii)	Resperine	(o)	Pyrrolidine			
(iv)	Quinine	(p)	Indole			

- (A) i-p; ii-o; iii-n; iv-m
- i-n; ii-p; iii-o; iv-m
- i-n; ii-m; iii-p; iv-o
- (D) i-o; ii-n; iii-p; iv-m

37. Of the following radicals, which is the most stable?

$$(i) \qquad (ii) \qquad (iii) \qquad (iv)$$

$$(A) \qquad (i) \qquad (B) \qquad (ii) \qquad (C) \qquad (iii) \qquad (D) \qquad (iv)$$

38. Identify the products (X and Y) in the following reaction :

39. Identify a major product, when 2-methylbutane is allowed to react with bromine in presence of light or heat.

$$(A) \quad \mathsf{Br} \qquad (B) \qquad \qquad (C) \qquad \qquad \mathsf{Br} \qquad (D) \qquad \qquad \mathsf{Br}$$

- **40.** Which one of the following reaction has positive Hammett reaction constant, ρ value?
 - (A) S_N2 displacement of iodide from ethyl iodide by phenoxide anions
 - (B) Hydrolysis of α , α -dimethylbenzyl chloride through S_N^{-1} pathway.
 - (C) Nucleophilic substitution reaction between piperidine and 1-bromo-2-nitrobenzene
 - (D) Nitration of substituted benzene derivatives.
- 41. The first Stokes line and the first anti-Stokes line in the rotational Raman spectrum of N_2O are displaced from the Rayleigh line by 2.508 cm⁻¹ on each side. Determine the rotational constant of N_2O .
 - (A) 2.514 cm^{-1} (B) 1.257 cm^{-1} (C) 0.629 cm^{-1} (D) 0.419 cm^{-1}
- **42.** Pick out a pair of molecule from the following options, which can exhibit both pure rotational and a rotational Raman spectrum?
 - (A) CO and CH_4 (B) N_2 and H_2O
- (C) NO and HCCD (D) CO_2 and N_2O .
- **43.** From the list of molecules, which would you expect the infrared active vibrations to be Raman inactive and vice versa?
 - (A) Iodobenzene (B) Benzene (C) Vinyl fluoride (D) NO₂

44.	a broad about 30 1475 cm ⁻¹	sorption band 060 cm ⁻¹ ; a s ; a series of sl	l at 30 strong	00 cm ⁻¹ absorpt	with sor	ne sha out 1 0 and	arper bands at 700 cm ⁻¹ ; a s	ppearin	e following data g on its should and at 1600 an	er
	(A) (C)	Ethanol Benzoic acid	d			(B) (D)	Phenol Acetic acid			
45.	Mössbauer	spectrum?	ordina	ation co	mplex ca		-	rupole	splitting in ⁵⁷ F	₹e
	•	e(CN) ₆]					$[Fe(CO)_5]$	NOI		
	(iii) Na ₃ [-	(D)	(::)			Na ₂ [Fe(CN)		(:)	
	· /	(i)	(B)	(ii)		` ´	(iii)	` ′	(iv)	
46.	around 210		What	-	e their fi	equer	results in a management of the	-		of .
47.	()		. /			` /		` /	s. Based on thes	
47.		out a correct i						signais	s. Dased on the	30
	(A)	Chloroethan			1		1,2-Dibromo	ethane		
	(C)	Benzene				(D)	Acetone			
48.	spectrum c (i) CH ₃ ((iii) (CH ₃		to a r CH ₃ ;	adical ca	ation form	ned by (ii) (iv)	e most promi y McLafferty CH ₃ CH ₂ CH ₂ (CH ₃) ₂ CHCO (iii)	rearrar COCH	I ₃ ; EH ₃) ₂ .	SS
40	` /	. ,	` /	. ,	4 4	()	,	(-)	()	
49.	(i) The iii) Hydri (iii) The a	ogen bonding	tivity of g solved ad corr	of the tra	ansition is e pronou	s generated to π* (B)	erally less that blue shifts.	bsent fo	or hydrocarbon.	
50.	The absorp	otion band m	aximu	ım for io	odine occ	curs a	t about 520 1	nm in t	he solvent CCl	۱ ₄ ۰
	•	orrect transiti			-	(~)	de de	(T)		
	(A)	π to σ^*	(B)	n to σ*	·	(C)	π^* to σ^*	(D)	π to π^*	
51.									methyl nitroxid	le
	radical (CI	H_3) ₂ NO, assur	ming t	the lines	do not o	verlap	o ? (I = 1 for 1	⁴ N; I =	$\frac{1}{2}$ for ¹ H)	
	(A)	21	(B)	12		(C)	24	(D)	3	
52.	Which one	of the follow	ing sp	oecies is	EPR sile	nt?				
		(ii) [S	$[5]^{2-}$	(iii)	$[SO_2]^-$	(i	v) [S ₄] ⁻			
COMPOSITIVAL COMPOSITIVAL	(А)	(i)	(B)	(ii)	TAL COMPIDENTIAL COMPIDENTIAL SEMPERATIAL COMP	(C)	(1111) Dinial Composanial Composanial Composanial Composanial	(D)	(iv)	nna covionn
A					9				020/20 [P.T.	

53.		sider the following statements about the electronic spectra of octahedral high spin plexes.
	(i)	Co ³⁺ can exhibit usually three absorption peaks.
	(ii)	Cr ³⁺ can display maximum one absorption peak.

The correct statement/s is/are

- (A) All of the above (i, ii & iii) (B) Only (i & ii) (C) Only (ii and iii) (D) Only (iii)
- Arrange the following compounds in decreasing order of pK_a (K_a = Acid dissociation constant): 54.

By making use of Woodward-Fieser rule, arrange the following compounds in increasing **55.** order of λ_{max} ?

The results of an analysis are 26.97 g compared with the accepted value of 27.06 g. The **56.** absolute error (in g) and relative error (in %) are

(A) -0.09 and -0.330.09 and -0.33(C) -0.09 and 0.33(D) 0.09 and 0.33

In HPLC, the expression for resolution of column is given by $R_s = \frac{2(t_{rB} - t_{rA})}{(W_A + W_B)}$ here the 57. terms W_A and W_B describe

- (A) Weight of analytes A and B (B) Retention time of analytes A and B
- (D) Selectivity factor of analytes A and B (C) Base width of analytes A and B

58. Which one of the statement is not relevant towards the application of GC-MS?

- (A) Tool for performing separations
- Useful for effectiveness of purification procedure (B)
- (C) The peak height or peak area of an eluate from a GC column has been widely used for quantitative analyses.
- Provides more authentic qualitative information than most of the spectroscopic methods.

The magnitude of strength of various kinds of non-covalent interactions such as **59.** (i) ion-ion, (ii) ion-dipole, and (iii) dipole-dipole, follow the order,

(A) ii > i > iii(B) iii > i > ii(C) i > ii > iii(D) iii > ii > i020/2021 10

60.		er the following statements with respect to hydrogen bonding:								
	• •	gh degree of directionality. cial kind of dipole-dipole interaction.								
					, 1	1 .	a · .			
			is linear with the hydro	_		between the two	o fluorine atoms			
	-	-	involving strong hydroge	n bon	d.					
	The correc			0	D) On	Av (i & ii)				
	(A) (C)	•	(i & iii) (ii & iii)			nly (i & ii) l of the above (i,	ii & iii)			
	` ,	•					11 & 111)			
61.			ex, which does not obey 1 $(CO)_{16}$ (B) $Fe_2(CO)_9$				Fe ₃ (CO) ₁₂			
62.	Match the	items	in List I (organometallic	comn	lev) wit	th their most ann	ropriate structure			
02.	in List II:	Items	in List i (organometame (comp	ica) wit	in then most app	ropriate structure			
			List I		I	List II	7			
		(i)	$[Cp_3Ni_2]^+$	(m)	Open-f	faced sandwiches				
		(ii)	vapor state of CpIn	(n)	Tilted	rings	7			
		(iii)	solid state of CpIn	(o)	Polymo	•				
		(iv)	Cp ₂ ReH	(p)	Triple	deckers				
	(A)	i-p; ii	-m; iii-o; iv-n	()	B) i-n	ı; ii-p; iii-o; iv-m	_			
	(C)	i-n; ii	-m; iii-p; iv-o	(D) i-o	o; ii-n; iii-p; iv-m				
63.	Zeise's sal	t, [Pt(C	$[C_2H_4]Cl_3$ has shown that	the e	thylene	occupies the fou	orth co-ordination			
			e planar complex. Identify							
		-	and with platinum metal.							
						H /₄H	H /₄H			
		H.	H Pt		(G) D	C C	C'			
	(A)	Pt ✓	(B) (E)		(C) r	Pt—II (D)	C			
		H´	H H H	Н		H	H			
64.	Match the	items i	n List I (name of process)	with	their m	nost appropriate c	atalyst (List II):			
			List I			List II				
		(i)	Wilkinson catalyst		(m)	[Rh(CO) ₂ I ₂] ⁻				
		(ii)	Oxo process		(n)	[PdCl ₄] ²⁻				
		(iii)	Monsanto acetic acid pro	cess	(o)	Co ₂ (CO) ₈				
		(iv)	Wacker process		(P)	[(Ph ₃ P) ₃ RhCl]				
	(A)		-n; iii-p; iv-m	`		o; ii-n; iii-o; iv-m				
	(C)	i-n; ii	-m; iii-p; iv-o	()	D) i-p	o; ii-o; iii-m; iv-n				
65.	Which character H ₂ Fe(CO)		ization technique would	usef	ful to c	confirm hydride	functionality in			
	(A)	•	spectrometry	()	B) Inf	fra-red				
	(C)	1 H N	-	`		össbauer				

66.	Identify the sec	cond nuclide formed ${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} \rightarrow {}^{103}_{42}.$			ection:			
	(A) $^{131}_{50}$	Sn (B) $^{131}_{50}$ Sl	b	(C)	$^{131}_{50}$ In	(D)	$^{131}_{50}I$	
67.	(A) Ma	of silicate mineral, what silicate mineral, what silicate mineral, which is a silicate of silicate mineral, which is a silicate of silicat	kaolin	(B) N	Magnesium	n analogue		;
68.	(A) X = (B) X = (C) X =	Following equation: $ \begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & $	Y = H $Y = H$ $Y = [H]$	BNEt ₃ BNEt ₃ BNEt ₃ BH ₂ (NE	t ₃) ₂]BH ₄			
69.		lectrons present in tri (B) 12		initride		N ₃] ⁻ ? (D)	8	
70.	The number of	P-P bond present in	a moleci	ıle, P ₄ S	₉ is			
	(A) 1	(B) 0		(C)	3	(D)	2	
71.	Match the List	- I (enzymes/coenzym	es) with t	their mos	st appropria	ate metal ior	ns in List – II:	
		List – I		List –	· II			
	(i)	Vitamin B ₁₂	(m)	Molyb	denum			
	(ii)	Carbonic Anhydrase	e (n)	Zinc				
	(iii)	Catechol oxidase	(o)	Cobalt				
	(iv)	Xanthine oxidase	(p)	Copper				
	· · · =	; ii-o; iii-m; iv-n			i-n; ii-m;	_		
	` ′ -	; ii-n; iii-o; iv-m			i-o; ii-n;	-		
72.	Match the List	- I (types of nitrides)) with th		-	t – II :		
		List – I		List – I	.1	 		
	(i)	Ionic nitrides	(m)	KNO ₂		-		
	(ii)	Covalent nitrides	(n)	W ₂ N		-		
	(iii)	Metallic nitrides	(o)	As ₄ N ₄				
			(p)	Na ₃ N				
	(A) i-p	; ii-o; iii-n		(B)	i-n; ii-o;	iii-m		
	(C) i-p	; ii-n; iii-m		(D)	i-m; ii-n;	iii-p		
73.	The term symb	ool for a ground state	of carbo	n atom i	is ${}^{3}P_{0}$. Her	e the value	'0' describes	
	(A) To	tal electron spin		(B)	Total ang	gular mome	entum	
COMPONENTIAL COMPONENTIA	T CONNECESTAT CONNECESTAT CONNECESTAT CONNECESTAT CONNECESTAT CONNECES	in multiplicity Trainic contracting contra	IL COMPICIENT AL COMPICIENTIAL COMPICIENTIAL CO	(D)	Total orb	ital angula	r momentum	ISBNIS CONTORNAL
020/	2021		12					A

74. Read the following statement and reason, pick out a suitable answer from the following option:

Statement: In Inorganic Chemistry, one of the analogues of benzene is borazine. This is misnomer because the chemical properties of borazine and benzene are quite different.

Reason: Due to the difference in electronegativity between boron and nitrogen, the more electron density is localized on boron atom so weakens the π -bonding in the ring.

- Both statement and reason are acceptable.
- (B) Both statement and reason are unacceptable.
- (C) Statement is acceptable but the reason needs to correct.
- (D) Reason is acceptable but the statement needs to correct.
- *75.* Arrange the following molecules in decreasing order of infrared P=O stretching frequency: F₃PO, Cl₃PO, Br₃PO, ClF₂PO.
 - (A) $F_3PO > Cl_3PO > Br_3PO > ClF_2PO$ (B) $ClF_2PO > F_3PO > Cl_3PO > Br_3PO$
 - (C) $F_3PO > ClF_2PO > Cl_3PO > Br_3PO$ (D) $Br_3PO > Cl_3PO > F_3PQ > ClF_2PO$
- Predict the product of the following reaction: **76.**

$$\begin{bmatrix} NH_3 \\ CI - Pt - NO_2 \\ CH_3 \end{bmatrix}^{\ominus} + CI^{\ominus} - \rightarrow$$

- ct the product of the Ionowing reaction $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus} + CI^{\ominus} \longrightarrow$ (A) No reaction (B) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CI & Pt & NO_2
 \end{bmatrix}^{\ominus}$ (C) $\begin{bmatrix}
 CI & NH_3 \\
 CI & Pt & CI
 \end{bmatrix}^{\ominus}$ (D) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{2\Theta}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (D) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3
 \end{bmatrix}^{\ominus}$ (E) $\begin{bmatrix}
 CI & Pt & NO_2 \\
 CH_3$
- Among the following complex, which one has high rate of water exchange : $[Na(OH_2)_6]^+, [Cr(OH_2)_6]^{3+}, [Al(OH_2)_6]^{3+}, [Mg(OH_2)_6]^{2+}$
 - (A) $[Na(OH_2)_6]^+$ (B) $[Cr(OH_2)_6]^{3+}$ (C) $[Al(OH_2)_6]^{3+}$ (D) $Mg(OH_2)_6]^{2+}$
- Usually, a redox reaction occur between Co³⁺ complex and [Cr(OH₂)₆]²⁺ through **78.** inner sphere mechanism. Pick out a correct order based on rate constant for the reaction between $[Cr(OH_2)_6]^{2+}$ and various Co^{3+} complexes, i.e., $[Co(NH_3)_6]^{3+}$, $[Co(NH_3)_5Cl]^{2+}, [Co(NH_3)_5I]^{2+}.$
 - (A) $[Co(NH_3)_6]^{3+} > [Co(NH_3)_5Cl]^{2+} > [Co(NH_3)_5l]^{2+}$
 - (B) $[Co(NH_3)_6]^{3+} < [Co(NH_3)_5Cl]^{2+} < [Co(NH_3)_5I]^{2+}$
 - (C) $[Co(NH_3)_6]^{3+} > [Co(NH_3)_5Cl]^{2+} < [Co(NH_3)_5l]^{2+}$
 - (D) $[Co(NH_3)_6]^{3+} < [Co(NH_3)_5Cl]^{2+} > [Co(NH_3)_5l]^{2+}$
- An iron rod is placed parallel to magnetic field of intensity 1000 A/m. The magnetic flux through the rod is 3×10^{-4} Wb and its cross-sectional area is 3 cm^2 . The magnetic permeability of the rod in WbA⁻¹m⁻¹ is
 - (A) 10^{-4}
- (B) 10^{-1}
- (C) 10^{-3}
- (D) 10^{-2}
- Recently, a new allotrope of carbon was discovered by three Scientists: Przemyslaw **80.** Gawel, Leo Gross & Harry L. Anderson and published (Science, 2019, Vol. 365, Issue 6459, pp. 1299-1301). Pick out that finding from the given options.
 - (A) sp hybridized cyclo[18]carbon
- (B) C_{70} fullerene rugby ball
- Carbon nanotubes
- (D) Graphene

81.	dimension	e dimension of al box of lengt	h <i>l</i> ?				-)
	(A)	$(l)^{1/2}$	(B) (l	$)^{-1/2}$	(C)	dimens	sionless	(D)	m(l)	1/2	
82.	According (A)	to Dulong and I 5R	Petit law (B) 31		capacity (C)		ant volun	ne of m (D)	onato 3RT		S
83.	Which fun	ction among th	e follov	wing is an	odd fu	nction?					
	(A)	$\frac{2}{l}\sin\left(\frac{\pi}{2} + \frac{n\pi}{l}\right)$	$\left(\frac{x}{a} \right)$ (B)	$\left(\frac{\alpha}{\pi}\right)^{1/4}$	$e^{-\alpha x^2}$	(C)	$\frac{2}{l}\sin\left(\frac{n\alpha}{l}\right)$	$\left(\frac{\pi x}{l}\right)$	(D) -	$\frac{2}{l}x\sin\left(\frac{n\pi x}{l}\right)$	
84.		e expectation r monic oscillat		position	operato	or for th	e ground	state	wave	function of	f
	(A)	0	(B) $\frac{h}{2}$	<u>v</u>	(C)	$\frac{hv}{4}$		(D)			
85.	Calculate 1	the degeneracy	of the	energy le	evel $\frac{1^2}{8r}$	$\frac{4h^2}{na^2}$ for	particle	in a t	hree-o	limensiona	1
	Cubic box	or ichigin a.									
0.6	(A)		` /		\ /			(D)		0.	
86.	_	on function of er doubly dege		_			_	te state	e (at a	n energy 0)
		$q = e^{-\beta \in 1} + e^{-\beta}$		state (with		~					
	` '	$q = 1 + 2e^{-\beta \in}$			(D)	$a = 2e^{\beta}$	$\beta \in + e^{-\beta \in \beta}$				
87.	If N, V, E potential o	, Τ, μ, represe f a thermodyna	ent the o	stem, then	on, vol	ume, en onical en	ergy, ten semble v	nperatı vill hav	ve	d chemica	1
		N, V, E are co							n.		
00		N, V, T are co									
88.		the relative re is infinite?	popuiai	ions of	ine sia	iles of	a two-ie	ever sy	ystem	when the)
	(A)		(B) 0.	5	(C)	1.0		(D)	2.0		
89.	What is the	e residual entro	py of c	arbon moi	noxide	?					
	(A)	R	(B) R	ln(2)	(C)	2 Rln(2	2)	(D)	0.5	Rln(2)	
90.	(A)		(B) 4	and 2	(C)	4 and 3	}	(D)	3 an	d 4	
91.	Identify a p	air of noble gas	fluoride	e, which ha	as the at	oility to c	convert m	etallic	mercu	ry to HgF ₂	?
		XeF ₂ and Xe	U			_	nd XeF ₆				
	(C)	XeF ₂ and Xel	F_4		(D)	XeF_2 , Σ	XeF ₄ and	XeF ₆			
92.	$[TiCl_6]^{3-}$ s	show a slight of	compres	ssion in b	ond ler	ngth of	Ti-Cl du	e to Ja	ahn-T	eller effect	•
	Two absor	ption peaks in		_				transiti	on fro	om the	
	(A)	Ground state				8					
	(B)	Ground state	\mathcal{L}			\mathcal{C}	\mathcal{C}				
	(C)	Ground state	$(^2T_{2g})$ to	o excited	states ($^{2}E_{g}$ and	$^{2}A_{1g}$				
	(D)	Ground state	$(^2T_{2g})$ t	o excited	state (2	E_g)				AL COMPONIUL COMPONIUL COMPONIUL COMPONIUL	
020/2	2021	van varruuniilis compositiis compositiis compositiis compositiis compositiis compositiis compositiis compositi	TIME E E PROBRIMAL COMPIGNETI AL COMPIGN	THE COMPONENT OF THE COMPONENT IN COMPONENT IN COMPONENT IN	4	SERVICE COMPOSETIAL COMPOSETIAL COMPOSE	THE COMPOSETIES COMPOSETIES COMPOSETIES OF	AMPHARITAL CORPIDENTAL CORPIDENTAL	ALMAL COMPONENTIAL COMPONENT	nn varmaditist Coensbirist Coensbirtist Coensbirtist	A

93.	option relat	ound 1, 2-dichloroeted to their symmet	ry.	geoi	metrical isome	ers. Choos	se the correct
		Both isomers poss					
	(B)	Both isomers poss	ess σ_{v} plane.				
	(C)	None of them have	e $\sigma_{ m h}$ plane.				
	(D)	One isomer has a o	$\sigma_{\rm v}$ plane and the	other	has σ_h plane.		
94.	Identify a <i>c</i> (A)	ne vertices of the eloso structure of bo Decaborane(14) Heptaborane(9)		om the (B)		options. 10)	alled a closo.
95.	The major	products formed in	the following re	action	is are	Ź	
	3 1	•	_				
	(A) (C)	H ₃ C CH ₃ X = 0 0 Y = H ₃ C CH ₃ X = 0 0 Y = H ₃ C CH ₃	HO OH H ₃ C CH ₃	(B) (D)	$X = 0$ H_3C CH_3 $X = 0$ $X = 0$	Y = HO $Y = HO$	OH CH ₃
		H ₃ C CH ₃	H ₃ C CH ₃		H ₃ C CH ₃	H₃C	CH₃
96.	How many (A)	inorganic sulfur pr 4 (B)		l rubre (C)		(D) 1	
97.		attice points of an other, the % of volval (B)	ume unoccupied	is	cupied by uni 52	form hard (D) 26	-
98.	` /	the following sta		` /		()	
70.	(i) Isotro (ii) Flow (iii) The r The correct		we much of the lo	ong-ra	inge order of s nolecular spaci	ngs are in	regular.
	(C)	Only (i and iii)		(D)	All of the abo	ove (i, ii a	nd iii)
99.	(i) Each (ii) No at (iii) The b (A)	lattice point in a cr tom need lie at a lat pasis must have the Only (i & ii)	ystal has the san	ne env etric c (B)	vironment. composition as Only (ii & iii	the entire	crystal.
	(C)	Only (i and iii)		(D)		`	*
100.		s of dielectric materia Ferrites (B)	al exhibits a hyste Elecrets		oop of polariza Dipole		
гочпаеты сооткаяты.	COMPERTAL COMPERTAL COMPERTAL COMPERTAL COMPERTAL	, sseandes, saerdes, sseandes, sseants, saerdes, saerdes, sseandes, sseandes, saerde	APIA, COMPERNA,	омповатых, свят сектых, свята	derli, compania, combinia, sembera, compania, compania, compania, compania, compania, compania, compania, comp	ombetia. Combetia. Combetia. Combetia.	020/2021 [P.T.O.]

SPACE FOR ROUGH WORK